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LETTER TO THE EDITOR 

Dynamics of field-driven interfaces in the two-dimensional 
Ising model 

Mustansir Barma! 
Department of Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3Np, 
UK 

Received I2 Febmaly IWZ, in final farm 31 March 1992 

AbslneL The time-dependent properties of a n  inclined interface separating up and down 
spin regions in a No-dimensional nearest-neighbur king mndel svolving under Glnuher 
dynamics in a non-zero fieid are studied. In the limit 01 large exchange mupling, the 
model reduces to the single-step model for ballistic growth and thence IO the asymmetric 
aclusion proces which describes a driven diRusive system of hard mre,particles an a 
one-dimensional lattice. The drill velocity of the interface is found as a function of field, 
temperature and inclination, and interface " d a t i o n  functions are related to sliding 
tag "e la t ion funclions in the panicle system. The existence of a critical value of the 
sliding-tag velocity implies lhat there is an inclinatian-dependent easy direction along 
which temporal interface fluctuations grow subdilfusively. This direction is found, as is 
the asymptotic khaviour of the correlation function in all other directions. 

There is currently a great deal of interest in the dynamical properties of moving 
interfaces, such as the profile resulting from deposition of material on a surface, or 
the boundary between two phases not in equilibrium. Monte Carlo simulations of 
simple lattice and off-lattice systems and studies of stochastic field theoretical models 
show that driven interfaces have growth laws for fluctuations that differ from their 
non-moving counterparts [l]. 

These features were illustrated in recent Monte Carlo work on the two- 
dimensional Ising model [2] .  The object of study was !he interface between the 
up and down spin phases at low temperature T, in the presence of an external field 
h. In the specific model studied, the exchange coupling was assumed to be anisotropic 
( J ,  # J , ) ,  and h,  T and J,, were all taken to he much smaller than J,. Under 
these circumstances, there are practically no overhangs, and the interface is repre- 
sented, at any instant, by a directed w i t i ~  oriented aiong the y-axis. Tne driir ana 
broadening of an initially flat interface were studied numerically [2 ] ,  and found to 
exhibit behaviour quite different from the case h = 0 [3, 41. 

In this paper we point out that it is possible to make some analytical statements 
about the time evolution of an inclined interface behveen the low-temperature phases 
of an Ising model in an external field. We assume that h and T 5 1/p are both 
ZECh sm*!!e.r rhan !he f i ~ ~ r e g  neighbour exchange co.p!ing _I (assQm.efl &gro";c\ I,--!' 

t On sabbatical leave kom 'Ma Institute of Fundamental Research, Homi Bhabha Road, Bombay 4woO5, 
India. 
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As in [Z], there are no overhangs; here the interface is a directed walk making a 
specified angle 4 with the z-axis (figure 1). However, unlike the situation considered 
in [Z], the length of the interface here does not vary in time. In steady state, the 
interface sweeps across the lattice with a velocity V which depends on ph and on 
the inclination 4. With Glauber dynamics for the king spins, the model reduces to 
the single-step model of ballistic growth 15-71, and thence to the one-dimensional ex- 
clusion process-a stochastic model of moving hard-core particles on a lattice [S, 91. 
In particular, dynamical interface correlation functions are related to sliding-tag mr- 
relation functions [lo, 111 in the exclusion process. We use this correspondence to 
deduce several steady state properties of the moving interface: (a) the dependence 
of V on 4 and ph; @) the orientation 0' (a function of 4 ) of an 'easy' direction 
along which fluctuations follow a slower growth law than along any other direction; 
(c) the asymptotic growth of fluctuations in all other directions, f3 # 0'. 
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F@re 1. A lilted inlerface @old line) between regions of 
up and down king spins Cylindrical toundary mnditions 
for the spins are defined by identifying the bmken lines m 
the figure, so that, for instance, spins a1 the circled s i t s  are 
equivalent. Since J is very large, only spins at the a m e n .  
like the circled ones, can flip. l b e  armw depicls lhe easy 
direction along which Ruclualions are subdiffusive. 

Since we are interested in interfaces which have a specified inclination, it is 
convenient to use cylindrical boundary conditions for the spins, with the axis of the 
cylinder making an angle -(?r/2 - 4 )  with the z-axis (figure 1). The cylinder is 
supposed to be infinitely long, and the system is started at t = -m in a state with a 
single interface separating a region of all up spins on one side of the cylinder, from 
a region of down spins. The field h, assumed positive for definiteness, induces the 
interface to move into the downspin region. The boundary conditions ensure that 
on average the interface makes an angle 4 with the z-axis . We are interested in 
characterizing the steady state properties of the interface in the course of its motion, 
in the thermodynamic limit when the radius of the cylinder is taken to infinity. 

As the king spins obey single-spin flip Glauber dynamics, and h,  T << J holds, 
only spins at the corners of the interface (e.g. the circled spins in figure 1) have an 
appreciable probability of reversing. Such a reversal leads to a flip of the corner, which 
preserves the length of the interface; in the limit h / J ,  T / J  - 0, the model reduces 
to the single-step deposition+vaporation model, with mrner flips corresponding to 
the elementary processes of deposition and evaporation [S, 61, or alternatively to a 
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cellular automaton rule for the redistribution of local curvatures [q. The mapping 
to the exclusion process follows if we associate a particle with each vertical bond 
of the interface, and a hole with each horizontal bond. Corner flip dynamics then 
corresponds to particle-hole exchange (Kawasaki dynamics) for the particle system. 
In the exclusion process, each particle is sampled once in each time step, and attemps 
to hop rightward with probability p, and leftward with probability q, with p + q = 1. 
Because of the hard core constraint, the hop actually takes place only if the sought 
site is w a n t .  The probabilities p and 4 can be related to the king model parameters 
on noting that the ratio of the rates of up-down and down-up flips is exp(-Zph); 
thus p = exp(oh)/:!cosh(ph). 

A similar mapping from king interfaces to the exclusion process has also been dis- 
cussed in the context of cluster kinetics [12, 131 but the boundary conditions employed 
and the questions addressed were different. Here, periodic boundary conditions allow 
us to think of the particle system carrying a current on a ring. Let Np and Ns denote 
the number of particles and sites respectively, and let p = N / N s  be the density. In 
steady state, every configuration of the N ,  particles is equal$ likely [9]. Let us label 
the particles sequentially, and let y,(t) be the displacement of the nth particle at 
time t. The drift velocity in steady state is [9] 

up ((Y,(t) - Y,(O))) = ( 1  - P )  ( P  - d .  (1) 

The drift velocity for labelled holes is uh = - ( p  - q)p,  and the current is j = 

The average inclination of the corresponding interface at any instant is given 
by tan+ = p/( l  - p )  with 0 < + < r j 2 .  In time t ,  the mean vertical shift 
of the interface is given by the average number of particles which pass by a given 
hole, namely, p(v, - uh)l.  The magnitude of the normal velocity is then V = 
p( vp - uh) cos q5 j ( s i n  q5 + cos 4) which may be rewritten as 

P(1 - P X P -  4). 

t anh  p h  
sec + + cosec 4 '  V =  

The correlation function involving interface fluctuations is extremely anisotropic, 
and the easy direction aiong which iiuciuaiiuns are smaiiesi, is noi, in generai, nurmai 
to the interface. Noting that the abscissa and ordinate of a point on the interface 
are just hole and particle tag labels respectively, it is natural to consider the effect of 
sliding tags [lo, 111, i.e. to consider correlation functions which monitor fluctuations 
in the separation between a tagged particle (at f = 0) and a particle whose tag 
increases linearly in time 

a 2 ( ~ , t )  = K y ( n t , t )  - v(n,O) - ut) ' )  (3) 

with n, = n + p(u - up)t.  Here U is a variable velocity, whose value controls the 
rate of tag sliding. If U = up, then U reduces to the auto-tag correlation function 
uself, for which the following exact results for the 1 - 03 behaviour are known [9, 141 
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For general U, the sliding tag correlation function (3) has been studied in [lo]. 
A coarse-grained description based on the Kardar-Parisi-Zhang (KPZ) equation [lS] 
with a first order gradient term included suggests that there is a critical value U< at 
which fluctuations are suppressed [lo]. Choosing U = uC corresponds to eliminating 
the first order gradient term which is present if U # uC. The resulting asymptotic 
behaviour of the correlation function is 

The value $ of the exponent characterizing the subdiffusive growth in (56) was de- 
duced from a renormalization group study of the noisy Burgers equation [lS, 161, and 
confirmed by a Bethe ansatz calculation of the spectral gap of the stochastic evolution 
operator for the asymmetric exclusion process with p = 1 [17, 181. 

A constraint on the value of uc comes from particle-hole duality, which implies 
U&) = -uC( l  - p ) .  The explicit answer, based on the argument given below, and 
originally deduced from a Monte Carlo study [lo], is 

U c ( P ) = ( 1 - 2 P )  ( P - Y ) .  (6) 

The velocity uc has a simple physical interpretation. The exclusion process is known 
to support hydrodynamic waves which involve moving density fluctuations [19, 201, 
akin to longitudinal sound waves in an equilibrium system. The existence of these 
waves-which are examples of the ‘kinematic’ waves introduced and discussed in 
[21]-follows from the conservation of particle number in the exclusion process. For 
such a wave a general argument determines the velocity to be a j / a p  [20, 211. A front 
(shock) which separates regions characterized by (j,,,,) and ( j 2 , p 2 )  has a velocity 
U which must satisfy j, - p1 U = j 2  - p2U since all particles of the first type which 
cross the front become particles of the second type. Considering adjoining regions 
which differ only infinitesimally in their densities, we see that the front betwcen them 
has a speed U = a j /ap .  In the case at hand, this equals u , ( p )  given by (6). 

The existence of a well defined velocity for fronts implies that density fluctuations 
are transported through the system more or less intact at the same velocity. In 
the steady state of the exclusion process there are statistical inhomogeneities of 
density throughout the system, characteristic of product measure states with random 
occupation of sites. Consequently, in our system with periodic boundary conditions, 
the density pattern corresponding to the initial state is moved bodily through the 
system with speed tiC. We can now understand why the sliding tag correlation function 
shows very different behaviour depending on whether or not U = uc. The choice U = 
uc in (3) corresponds to sliding the tags at a m e  which keeps abreast of the moving 
density pattern. The corresponding correlation function U(.,, t )  then monitors the 
slow intrinsic decay of the density wave and the corresponding fluctuations (56) are 
the smallest possible. If U is not equal to U < ,  a phase difference develops between the 
sliding tags and the moving densicy pattern. The rcsult is a rapid growth of U( U ,  t) 
which reflects, predominantly, the spatial structure of the initial density pattern which 
is moving past the particles. 

An important consequence of the slide of the initial pattern is that it permits 
u(u,  t )  to be computed easily. Noting that the displacement of particle m at time 
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t from its mean position will mirror that of particle m' at t = 0, with m' = 
m - p ( u , -  v,)t, we may write U ( U ,  t )  in terms of an equal-time correlation function 

(7) o2(u,t)  = ((y(n',O) - y(n,O) - (U- U , ) t ) 2 )  

where n* = n + p( U - uc)t .  Since the initial state corresponds to random occupation 
of sites with probability p, the right-hand side of (7) can be evaluated. Let n, and 
nh be the number of particles and holes between sites 1% and n*. Then y(n',O) - 
y(n,O) = np + nh, and U' can be written as 

(8) 
1 

0 2 ( u ,  0 = - ( ( P n h  - (1 - p ) n , I 2 )  
P2 

subject to (np+ nh)  = ( U -  uc) t .  For large t ,  (8) can be evaluated using the central 
limit theorem, with the result 

?he derivation of (9) neglects the decay of the density pattern, but this is justified if t 
is large enough, since the resulting leading order result is larger than the contribution 
(56) from dissipation. A non-trivial check is obtained by setting U = up, in which 
case the auto-tag correlation function [14] uself in (4u) should be recovered. This is 
indeed the case; (9) gives the generalization of the auto-tag diffusion constant for the 
sliding-tag process. 

We now turn to implications for the intcrface in the king model. Density waves 
in the exclusion process correspond to transverse excitations of the intcrface, which 
consequently have a well-defined velocity uC. O n l y  when the interface tilt angle 
4 = n/4, is this velocity zero. Let us measure interface parameters with rcspect to 
the average orientation AA' of the interface at i = 0. At time 1 ,  let h( 7', t )  be the 
interface location (measured normal to AA') minus Vt,  at a point a distance T along 
AA'. Consider the correlation function 

s2(e,t) = ( ( h ( T , o ) . -  h(# , t ) )?)  ('0) 

where 0 is the angle the displacement ( T ' - T )  makes with the negative z axis. S(0,  t )  
may be related to the correlation function U( U ,  t )  defined in (3). The corresponding 
sliding tag velocity U is determined by noting that the slope is given by the ratio of 
the u-induced particle tag shift p ( u  - u p )  (vertical displacement), to the analogous 
hole tag shift 

P 
p U - v  

1 - p  u-vh 
tanQ = -- -. 

The fluctuation in the location v, of a given particle n gives the horizontal excursion 
of the interface at ordinate equal to n, and is related to the interface height h by a 
factor sin 4. Thus we have 

S ( Q , t )  = s i n 4  u(u,~). (12) 
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Equations (11) and (12), together with the results for the sliding tag correlation 
function U( U, 1) .  determine the asymptotic behaviour of interface fluctuations in the 
king model. 

The critical velocity uc determines the direction 0' of the easy axis (figure 1). 
From (6) and (11) we find 

t a n  e* = tan'4.  (13) 

Along most directions, (0 + e'), the correlation function S(Q, t )  grows as tilz, with 
a prefactor known from (9) and (12). On the other hand, along the critical direction, 
(5b) implies that S(0' ,  1 )  follows a t113 growth law. Except when 4 = r / 4 ,  the easy 
direction does not coincide with the normal. This is reminiscent of the difference 
between the angle of incidence and the angle of growth in deposition processes. A 
, , C . U . O L I C .  U.,.p.,, ,"I" 11- "UU'I yz"y""" 1". M l l U L ' C  U'pO','"., ,LA,, Y", I L  w .."I 

exact [SI and differs from (13) in both form and content. The existence of an easy 
direction for the single-step model has not been discussed earlier, probably because 
previous studies [S-71 dealt only with substrates which correspond to 4 = r / S .  
We also note that several studies on this and related models focus on the time- 
dependence of the average width of an initially flat interface rather than two-point 
correlation functions; the width is not sensitivc to transverse wave motion or the 
concomitant anisotropy. 

The mapping between the interface and exclusion process is useful for other 
correlation functions too. For instance, the interface velocity-velocity correlation 
functions [y are determined by sliding tag correlation functions of the form (( w , , , ( t ) -  
v,,(O))'), where v, is the instantaneous velocity of the nth particle and n, is the 
sliding tag at time t. Consequently these correlation functions too would be expected 
to exhibit angular anisotropy characteristized by the easy direction 0'. 

Throughout, we have been primarily concerned with fluctuation properties of a 
non-equilibrium Interface driven by a non-zero field h, but it is also of interest to 
see what the mapping to the particle problem implies for interface fluctuations when 
h = 0. In this a s e ,  the interface is in thermal equilibrium, and does not move 
bodily (V = 0). In the corresponding symmetric exclusion process, there is no 
macroscopic current, nor are there moving density waves. The auto-tag correlation 
function (46) follows a t'14 growth law. The correlation function for two k e d  
tags, which determines the interface correlation function S(r - ?-',t) has also been 
calculated [ll] in a harmonic stochastic theory, which seems to give exact results 
(as checked by Monte Carlo simulation). The result for S has a scaling form with 
argument z G t/(v - r')*, and the scaling function was evaluated explicitly in [I l l .  
The associated leading behaviour of the correlation function is S lr - ?-'I1/' for 
z < 1, and S U t114 for large times ( z  > 1). This behaviour is in accord with Monte 
Carlo results for the anisotropic Ising model when h = 0 131, and is characteristic 
of fluctuations in surfaces in which growth-induced nonlinearities are not important 
14, 3, 241. 

In summary, the mapping from the king interface to the exclusion process of 
moving hard core particles allows an exact determination of several interfacial quan- 
tities of interest, as functions of /3h and the inclination 4. A simple physical picture 
underlies the dynamics. The number of particles in the exclusion process (or mr- 
respondingly the length of the horizontal and vertical segments of the interface in 
the king problem) is conserved, and an immediate consequence of the conservation 

Lnnr;rt:r 't0nno-t "In' h-c boon nrnnnrnrl fnr hqll;e+:.- A a n n r : r k n  1171 h 3 . r  ;r ;r rrrt 
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k w  is the existence of kinematic waves which move with velocity U=. These waves, 
which correspond to transverse motion of the interface, are present whenever Oh is 
non-zero and are responsible for strong directional effects in interface mrrelations. 
The t'/* growth for B # 8' is a reflection of spatial correlations in the initial state 
whose density rofile is transported bodily through the system at speed U,, while the 

of this profile. This picture also gives a simple way to obtain the generalization of the 
self-diffusion mnstant for the sliding tag proms, and has proved useful in a detailed 
study [25] of the the related problem of the non-equilibrium dynamics of a moving 
interface between up and down spin phases in the mom model 1261. 

It is clear that a key role is played by moving density waves arising from the conser- 
vation law which, for the Ising model, is strictly valid only in the limit h /  J, T /  J - 0. 
The extent to which the results would change when departures from this limit are 

subdiffusive 1' P growth of fluctuations along the easy axis 0' reflects the dissipation 

mnsidered is a!? I!!teresti.g ope!! qneainz. 
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